A Few Questions Concerning γ-Graphs

Elizabeth Connelly, Furman University
Steve Hedetniemi, Clemson University
Kevin Hutson, Furman University

Abstract

As introduced in the paper by Fricke, et. al., given a graph $G = (V, E)$, the γ-graph $G(\gamma) = (V(\gamma), E(\gamma))$ is the graph whose vertex set corresponds in a one-to-one way with the γ-sets, or minimum-cardinality dominating sets, of G. Two γ-sets, say D_1 and D_2, are adjacent in $E(\gamma)$ if there exists a vertex $v \in D_1$ and a vertex $w \in D_2$ such that v is adjacent to w and $D_1 = D_2 - \{w\} \cup \{v\}$, or equivalently, $D_2 = D_1 - \{v\} \cup \{w\}$. In this talk we investigate two open questions regarding these γ-graphs. The first concerns whether every graph H is the γ-graph of some graph G. We show that for every graph H, there exists a graph G such that $H \simeq G(\gamma)$. The second question concerns when $G(\gamma)$ is disconnected. Here we show that a graph, G, must have at least six vertices for $G(\gamma)$ to be disconnected, and we characterize the graphs on six vertices so that $G(\gamma)$ is disconnected.