George Shields Faculty and Staff Chemistry Furman University

George Shields enjoys a national reputation in the field of undergraduate research, having collaborated with more than 115 undergraduate students in the fields of computational chemistry, structural biochemistry and science education. He received the 2015 American Chemical Society (ACS) Award for Research at an Undergraduate Institution and the 2018 Research Corporation for Science Advancement Transformational Research and Excellence in Education Award (TREE). He is also founder and director of the Molecular Education and Research Consortium in Undergraduate Computational Chemistry (MERCURY), a collaboration of 29 undergraduate research teams at 25 different institutions.

George served as Furman's Vice President for Academic Affairs and Provost from 2016-2019. This was preceded by six years at Bucknell University as Dean of the College of Arts and Sciences, where he oversaw the university's School of Management and was a professor in the department of chemistry. He served as founding dean of the College of Science and Technology at Armstrong Atlantic State University, and he has also taught at Hamilton College and Lake Forest College.

George received his bachelor's and master's degrees in chemistry and a doctorate in physical chemistry, all from the Georgia Institute of Technology. His postdoctoral research on protein-DNA interactions at Yale University and the Howard Hughes Medical Institute was conducted in the laboratory of Professor Thomas Steitz, the 2009 Chemistry Nobel Laureate.

Name Title Description

TFA-002

Summer Undergraduate Research

My research efforts use computational methods to gain insights into biochemistry and atmospheric chemistry. My research group uses quantum chemistry, Monte Carlo, and molecular dynamics techniques to investigate the structure and function of molecules. The common theme throughout is the involvement of undergraduates in a productive and meaningful research experience.

Computational pKa Prediction

Using these methods requires a thorough understanding of solvation effects, and much of our basic work involves finding and learning how to use the best methods for incorporating solvation into traditional computational chemistry techniques. We have completed a systematic study of pKa calculations, funded by the American Chemistry Society (ACS), Petroleum Research Fund (PRF) and National Science Foundation (NSF), in order to learn how state-of-the-art methods can best be used to accurately predict deprotonation in aqueous solution.

Shields research, figure 1

Drug Design

We had drug design projects with funding from NIH, DOD, and Research Corporation, with an emphasis on breast cancer. Alpha-fetoprotein (AFP) is a protein produced by the fetal yolk sac and is presumed to act as a growth regulator during gestation. It is 591 amino acids long. It was discovered that high levels of circulating AFP in maternal serum decrease a woman’s risk of developing estrogen receptor positive (ER+) breast cancer later in life. It has recently been discovered that the peptide can be shortened to peptides as small as 4 amino acids long and still retain active breast cancer inhibition qualities. We have applied and demonstrated for the first time that replica exchange molecular dynamics (REMD) simulations can be used as a novel lead compound design tool. We have shown that a common conformation that is shared between the active linear 8-mer and cyclic 9-mer peptides of AFP is a conserved reverse beta-turn, and the smaller peptide analogs TOVNO, TPVNP, TOVN, and TPVN. These analogs inhibit estrogen-dependent cell growth in a mouse uterine growth assay, through interaction with a yet to be discovered key receptor, and inhibit human breast cancer in a mouse xenograft.

Shields research, figure 2


Structure and Properties of Water Clusters and Atmospheric Hydrates

We are also working on projects in atmospheric chemistry that focus on the role of water clusters. The aim is to locate the global and all relevant low lying local minima for each cluster.

Shields research, figure 3

Our sampling methods ensure that we have searched the large configurational space of hydrogen bonding networks available to these clusters and extracted the lowest energy configurations. Our quantum mechanical method of choice, MP2 is the most affordable yet very accurate method for studying non-covalently bonded systems like water clusters. The interplay between energy and entropy, the shapes and hydrogen bonding networks of the clusters are used to explain the growth patterns of the clusters. Ultimately, this information will be used to calculate cluster populations and nucleation rates that are compared with experiment rates of formation of aerosol particles.

Shields research, figure 4

Improved understanding of atmospheric aerosol formation would reduce the large uncertainty in the cooling effect of aerosols on the global radiation balance (see below) and refine global climate models.

Shields research, figure 5
IPCC WG1 4th Assessment Report, 2007

  • López, J.C.; Pérez, C.; Blanco, S.; Shubert, V.A; Temelso, B.; Shields, G.C.; Schnell, M. Water Induces the Same Crown Shapes as Li+ or Na+ in 15-crown-5 Ether: a Broadband Rotational Study. Phys. Chem. Chem. Phys. 2019, 21, 2875-2881.
  • Temelso, B.T.; Morrison, E.F.; Speer, D.L.; Cao, B.C.; Appiah-Padi, N.; Kim, G.; Shields, G.C. Effect of Mixing Ammonia and Alkylamines on Sulfate Aerosol Formation J. Phys. Chem. A 2018, 122, 6, 1612-1622. Selected for 2019 Virtual Issue on Research in Physical Chemistry at Primarily Undergraduate Institutions, J. Phys. Chem. B 2019 123. DOI: 10.1021/acs.jpcb.9b02336
  • Temelso, B.; Klein K. L.; Mabey, J. W.; Perez, C.; Pate, B. H.; Kisiel, Z.; Shields, G. C. Exploring the Rich Potential Energy Surface of (H2O)11 and Its Physical Implications J. Chem. Theory Comput., 2018, 14, 1141-1153.
  • Pérez, C.; Steber, A. L.; Rijs, A. M.; Temelso, B.; Shields, G. C.; Lopez, J. C.; Kisiel, Z.; Schnell, M. Corannulene and its complex with water: a tiny cup of water. Phys. Chem. Chem. Phys. 2017, 19, 14214-14223.
  • Temelso, B.; Mabey, J. M.; Kubota, T.; Appiah-Padi, N.; Shields, G. C. ArbAlign: A Tool for Optimal Alignment of Arbitrarily Ordered Isomers Using the Kuhn-Munkres Algorithm. J. Chem. Inf. Model., 2017, 57, 1045-1054.
  • Steber, A. L.; Pérez, C.; Temelso, B.; Shields, G. C.; Rijs, A. M.; Pate, B. H.; Kisiel, Z.; Schnell, M. Capturing the Elusive Water Trimer from the Stepwise Growth of Water on the Surface of the Polycyclic Aromatic Hydrocarbon Acenaphthene. J. Phys. Chem. Lett., 2017, 8, 5744-5750.
  • Richardson, J. O.; Pérez, C.; Lobsiger, S.; Reid, A. A.; Temelso, B.; Shields, G. C.; Kisiel, Z.; Wales, D. J.; Pate, B. H.; Althorpe, S. C. Concerted Hydrogen-Bond Breaking by Quantum Tunneling in the Water Hexamer Prism. Science. 2016, 351 (6279), 1310-1313.
  • Shields, G. C. Guest Foreword. In The Power and Promise of Early Research; Murray, D. H., Obare, S. O., Hageman, J. H., Eds.; American Chemical Society: Washington, D.C., 2016; pp xiii-€xv.
  • Swan, J. S.; Findeis, P. M.; Hilton, S.; Lebold, K. M.; Temelso, B.; Shields, G. C. Formation of Deprotonated 2-Imidazoline-4(5)-One Product Ions in the Collision-Induced Dissociation of Some Serine-Containing Dipeptides. Int. J. Mass Spectrom. 2015, 381, 25-32.
  • Temelso, B.; Renner, C. R.; Shields, G. C. Importance and Reliability of Small Basis Set CCSD(T) Corrections to MP2 Binding and Relative Energies of Water Clusters. J. Chem. Theory Comput. 2015, 11 (4), 1439-1448.
  • Seybold, P. G.; Shields, G. C. Computational Estimation of pKa Values. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2015, 5 (3), 290-€297.
  • Bustos, D. J.; Temelso, B.; Shields, G. C. Hydration of the Sulfuric Acid-€Methylamine Complex and Implications for Aerosol Formation. J. Phys. Chem. A 2014, 118 (35), 7430-€7441.
  • Pérez, C.; Zaleski, D. P.; Seifert, N. A.; Temelso, B.; Shields, G. C.; Kisiel, Z.; Pate, B. H. Hydrogen Bond Cooperativity and the Three-Dimensional Structures of Water Nonamers and Decamers. Angew. Chemie Int. Ed. 2014, 53 (52), 14368-14372.
  • Temelso, B.; Alser, K. A.; Gauthier, A.; Palmer, A. K.; Shields, G. C. Structural Analysis of α-Fetoprotein (AFP)-like Peptides with Anti-Breast-Cancer Properties. J. Phys. Chem. B 2014, 118 (17), 4514-4526.
  • Shields, G. C.; Seybold, P. G. Computational Approaches for the Prediction of pKa Values; CRC Press: Boca Raton, 2014.
  • Pérez, C.; Lobsiger, S.; Seifert, N. A.; Zaleski, D. P.; Temelso, B.; Shields, G. C.; Kisiel, Z.; Pate, B. H. Broadband Fourier Transform Rotational Spectroscopy for Structure Determination: The Water Heptamer. Chem. Phys. Lett. 2013, 571, 1-15.
  • Temelso, B.; Köddermann, T.; Kirschner, K. N.; Klein, K.; Shields, G. C. Structure and Thermodynamics of H3O+(H2O)8 Clusters: A Combined Molecular Dynamics and Quantum Mechanics Approach. Comput. Theor. Chem. 2013, 1021, 240-248.
  • Kinnel, R. B.; Van Wynsberghe, A. W.; Rosenstein, I. J.; Brewer, K. S.; Cotten, M.; Shields, G. C.; Borton, C. J.; Senior, S. Z.; Rahn, G. S.; Elgren, T. E. A Departmental Focus on High Impact Undergraduate Research Experiences. In Developing and Maintaining a Successful Undergraduate Research Program; American Chemical Society: Washington, D.C., 2013; pp 5-22.
  • Husar, D. E.; Temelso, B.; Ashworth, A. L.; Shields, G. C. Hydration of the Bisulfate Ion: Atmospheric Implications. J. Phys. Chem. A 2012, 116 (21), 5151-5163.
  • Pérez, C.; Muckle, M. T.; Zaleski, D. P.; Seifert, N. A.; Temelso, B.; Shields, G. C.; Kisiel, Z.; Pate, B. H. Structures of Cage, Prism, and Book Isomers of Water Hexamer from Broadband Rotational Spectroscopy. Science. 2012, 336 (6083), 897-901.
  • Temelso, B.; Morrell, T. E.; Shields, R. M.; Allodi, M. A.; Wood, E. K.; Kirschner, K. N.; Castonguay, T. C.; Archer, K. A.; Shields, G. C. Quantum Mechanical Study of Sulfuric Acid Hydration: Atmospheric Implications. J. Phys. Chem. A 2012, 116 (9), 2209-2224.
  • Temelso, B.; Phan, T. N.; Shields, G. C. Computational Study of the Hydration of Sulfuric Acid Dimers: Implications for Acid Dissociation and Aerosol Formation. J. Phys. Chem. A 2012, 116 (39), 9745-9758.
  • Temelso, B.; Archer, K. A.; Shields, G. C. Benchmark Structures and Binding Energies of Small Water Clusters with Anharmonicity Corrections. J. Phys. Chem. A 2011, 115 (43), 12034-12046.
  • Temelso, B.; Shields, G. C. The Role of Anharmonicity in Hydrogen-Bonded Systems: The Case of Water Clusters. J. Chem. Theory Comput. 2011, 7 (9), 2804-2817.
  • Andersen, T. T.; Bennett, J. A.; Jacobson, H.; Shields, G. C. Alpha-Fetoprotein Peptides. US 7964701 B2, 2011.
  • Shields, R. M.; Temelso, B.; Archer, K. A.; Morrell, T. E.; Shields, G. C. Accurate Predictions of Water Cluster Formation, (H20)n=2-10. J. Phys. Chem. A 2010, 114 (43), 11725-11737.
  • Alongi, K. S.; Shields, G. C. Theoretical Calculations of Acid Dissociation Constants: A Review Article. In Annual Reports in Computational Chemistry; Ralph A. Wheeler, Ed.; Elsevier: Amsterdam, 2010; Vol. 6, pp 113-€138.
  • Morrell, T. E.; Shields, G. C. Atmospheric Implications for Formation of Clusters of Ammonium and 1-10 Water Molecules. J. Phys. Chem. A 2010, 114 (12), 4266-4271.
  • Shields, G. C. Creating a Comprehensive Summer Undergraduate Research Program Despite Fiscal Challenges. CUR Q. 2010, 30 (4), 18-€21.
  • Shields, G. C. Using Pre-College Research to Promote Student Success and Increase the Number of Science Majors. CUR Q. 2010, 31 (1), 43-€47.
  • Andersen, T. T.; Bennett, J. A.; Jacobson, H.; Shields, G. C.; Kirschner, K. N. Alpha-Fetoprotein Peptides and Uses Thereof. US 7598342 B2, 2009.
  • Joseph, L. C.; Bennett, J. A.; Kirschner, K. N.; Shields, G. C.; Hughes, J.; Lostritto, N.; Jacobson, H. I.; Andersen, T. T. Antiestrogenic and Anticancer Activities of Peptides Derived from the Active Site of Alpha-Fetoprotein. J. Pept. Sci. 2009, 15 (4), 319-€325.
  • Salisburg, A. M.; Deline, A. L.; Lexa, K. W.; Shields, G. C.; Kirschner, K. N. Ramachandran-Type Plots for Glycosidic Linkages: Examples from Molecular Dynamic Simulations Using the Glycam06 Force Field. J. Comput. Chem. 2009, 30 (6), 910-€921.
  • Shields, G. C. Computational Approaches for the Design of Peptides with Anti-Breast Cancer Properties. Future Med. Chem. 2009, 1 (1), 201-€212.
  • Allodi, M. A.; Kirschner, K. N.; Shields, G. C. Thermodynamics of the Hydroxyl Radical Addition to Isoprene. J. Phys. Chem. A 2008, 112 (30), 7064-€7071.
  • Dunn, M. E.; Shields, G. C.; Takahashi, K.; Skodje, R. T.; Vaida, V. Experimental and Theoretical Study of the OH Vibrational Spectra and Overtone Chemistry of Gas-Phase Vinylacetic Acid. J. Phys. Chem. A 2008, 112 (41), 10226-€10235.
  • Hartt, G. M.; Shields, G. C.; Kirschner, K. N. Hydration of OCS with One to Four Water Molecules in Atmospheric and Laboratory Conditions. J. Phys. Chem. A 2008, 112 (19), 4490-€4495.
  • Sherer, E. C.; Kirschner, K. N.; Pickard, F. C.; Rein, C.; Feldgus, S.; Shields, G. C. Efficient and Accurate Characterization of the Bergman Cyclization for Several Enediynes Including an Expanded Substructure of Esperamicin A(1). J. Phys. Chem. B 2008, 112 (51), 16917-€16934.
  • Shields, G. C.; Kirschner, K. N. The Limitations of Certain Density Functionals in Modeling Neutral Water Clusters. Synth. React. Inorganic, Met. Nano-Metal Chem. 2008, 38 (1), 32-€36.
  • Kirschner, K. N.; Hartt, G. M.; Evans, T. M.; Shields, G. C. In Search of CS2(H2O)n=1-4 Clusters. J. Chem. Phys. 2007, 126 (15).
  • Kirschner, K. N.; Lexa, K. W.; Salisburg, A. M.; Alser, K. A.; Joseph, L. C.; Andersen, T. T.; Bennett, J. A.; Jacobson, H. I.; Shields, G. C. Computational Design and Experimental Discovery of an Antiestrogenic Peptide Derived from Alpha-Fetoprotein. J. Am. Chem. Soc. 2007, 129 (19), 6263-€6268.
  • Allodi, M. A.; Dunn, M. E.; Livada, J.; Kirschner, K. N.; Shields, G. C. Do Hydroxyl Radical-Water Clusters, OH(H2O)n, n=1-5, Exist in the Atmosphere? J. Phys. Chem. A 2006, 110 (49), 13283-€13289.
  • Alongi, K. S.; Dibble, T. S.; Shields, G. C.; Kirschner, K. N. Exploration of the Potential Energy Surfaces, Prediction of Atmospheric Concentrations, and Prediction of Vibrational Spectra for the HO2-·-·-·(H2O)n (n = 1-ˆ’2) Hydrogen Bonded Complexes. J. Phys. Chem. A 2006, 110 (10), 3686-€3691.
  • Dunn, M. E.; Evans, T. M.; Kirschner, K. N.; Shields, G. C. Prediction of Accurate Anharmonic Experimental Vibrational Frequencies for Water Clusters, (H2O)n, n=2-5. J. Phys. Chem. A 2006, 110 (1), 303-€309.
  • Pickard, F. C.; Griffith, D. R.; Ferrara, S. J.; Liptak, M. D.; Kirschner, K. N.; Shields, G. C. CCSD(T), W1, and Other Model Chemistry Predictions for Gas-Phase Deprotonation Reactions. Int. J. Quantum Chem. 2006, 106 (15, SI), 3122-€3128.
  • Pickard, F. C.; Shepherd, R. L.; Gillis, A. E.; Dunn, M. E.; Feldgus, S.; Kirschner, K. N.; Shields, G. C.; Manoharan, M.; Alabugin, I. V. Ortho Effect in the Bergman Cyclization: Electronic and Steric Effects in Hydrogen Abstraction by 1-Substituted Naphthalene 5,8-Diradicals. J. Phys. Chem. A 2006, 110 (7), 2517-€2526.
  • Day, M. B.; Kirschner, K. N.; Shields, G. C. Global Search for Minimum Energy (H2O)n Clusters, n=3-5. J. Phys. Chem. A 2005, 109 (30), 6773-€6778.
  • Day, M. B.; Kirschner, K. N.; Shields, G. C. Pople-€™s Gaussian-3 Model Chemistry Applied to an Investigation of (H2O)8 Water Clusters. Int. J. Quantum Chem. 2005, 102 (5), 565-€572.
  • Liptak, M. D.; Shields, G. C. Comparison of Density Functional Theory Predictions of Gas-Phase Deprotonation Data. Int. J. Quantum Chem. 2005, 105 (6), 580-€587.
  • Pickard, F. C.; Dunn, M. E.; Shields, G. C. Comparison of Model Chemistry and Density Functional Theory Thermochemical Predictions with Experiment for Formation of Ionic Clusters of the Ammonium Cation Complexed with Water and Ammonia; Atmospheric Implications. J. Phys. Chem. A 2005, 109 (22), 4905-€4910.
  • Pickard, F. C.; Pokon, E. K.; Liptak, M. D.; Shields, G. C. Comparison of CBS-QB3, CBS-APNO, G2, and G3 Thermochemical Predictions with Experiment for Formation of Ionic Clusters of Hydronium and Hydroxide Ions Complexed with Water. J. Chem. Phys. 2005, 122 (2).
  • Zhan, C. G.; Deng, S. X.; Skiba, J. G.; Hayes, B. A.; Tschampel, S. M.; Shields, G. C.; Landry, D. W. First-Principle Studies of Intermolecular and Intramolecular Catalysis of Protonated Cocaine. J. Comput. Chem. 2005, 26 (10), 980-€986.
  • Dunn, M. E.; Pokon, E. K.; Shields, G. C. The Ability of the Gaussian-2, Gaussian-3, Complete Basis Set-QB3, and Complete Basis Set-APNO Model Chemistries to Model the Geometries of Small Water Clusters. Int. J. Quantum Chem. 2004, 100 (6), 1065-€1070.
  • Dunn, M. E.; Pokon, E. K.; Shields, G. C. Thermodynamics of Forming Water Clusters at Various Temperatures and Pressures by Gaussian-2, Gaussian-3, Complete Basis Set-QB3, and Complete Basis Set-APNO Model Chemistries; Implications for Atmospheric Chemistry. J. Am. Chem. Soc. 2004, 126 (8), 2647-€2653.
  • Palascak, M. W.; Shields, G. C. Accurate Experimental Values for the Free Energies of Hydration of H+, OH-, and H3O+. J. Phys. Chem. A 2004, 108 (16), 3692-€3694.
  • Liptak, M. D.; Gross, K. C.; Seybold, P. G.; Feldgus, S.; Shields, G. C. Absolute pKa Determinations for Substituted Phenols. J. Am. Chem. Soc. 2002, 124 (22), 6421-€6427.
  • Shields, G. C. The Benefits of Forming a Consortium for an NSF-MRI Proposal. CUR Q. 2002, December (December), 80-€81.
  • Feldgus, S.; Shields, G. C. An ONIOM Study of the Bergman Reaction: A Computationally Efficient and Accurate Method for Modeling the Enediyne Anticancer Antibiotics. Chem. Phys. Lett. 2001, 347 (4-€6), 505-€511.
  • Liptak, M. D.; Shields, G. C. Accurate pKa Calculations for Carboxylic Acids Using Complete Basis Set and Gaussian-N Models Combined with CPCM Continuum Solvation Methods. J. Am. Chem. Soc. 2001, 123 (30), 7314-€7319.
  • Liptak, M. D.; Shields, G. C. Experimentation with Different Thermodynamic Cycles Used for pKa Calculations on Carboxylic Acids Using Complete Basis Set and Gaussian-N Models Combined with CPCM Continuum Solvation Methods. Int. J. Quantum Chem. 2001, 85 (6, SI), 727-€741.
  • Pokon, E. K.; Liptak, M. D.; Feldgus, S.; Shields, G. C. Comparison of CBS-QB3, CBS-APNO, and G3 Predictions of Gas Phase Deprotonation Data. J. Phys. Chem. A 2001, 105 (45), 10483-€10487.
  • Sherer, E. C.; Bono, S. J.; Shields, G. C. Further Quantum Mechanical Evidence That Difluorotoluene Does Not Hydrogen Bond. J. Phys. Chem. B 2001, 105 (35), 8445-€8451.
  • Toth, A. M.; Liptak, M. D.; Phillips, D. L.; Shields, G. C. Accurate Relative pKa Calculations for Carboxylic Acids Using Complete Basis Set and Gaussian-N Models Combined with Continuum Solvation Methods. J. Chem. Phys. 2001, 114 (10), 4595-€4606.
  • Shields, G. C.; Laughton, C. A.; Orozco, M. Molecular Dynamics Simulation of a PNA-·DNA-·PNA Triple Helix in Aqueous Solution. J. Am. Chem. Soc. 1998, 120 (24), 5895-€5904.
  • Sherer, E. C.; Yang, G.; Turner, G. M.; Shields, G. C.; Landry, D. W. Comparison of Experimental and Theoretical Structures of a Transition State Analogue Used for the Induction of Anti-Cocaine Catalytic Antibodies. J. Phys. Chem. A 1997, 101 (45), 8526-€8529.
  • Shields, G. C.; Laughton, C. A.; Orozco, M. Molecular Dynamics Simulations of the d(T-·A-·T) Triple Helix. J. Am. Chem. Soc. 1997, 119 (32), 7463-€7469.
  • Kirschner, K. N.; Sherer, E. C.; Shields, G. C. Use of the Supermolecule Approach to Model the Syn and Anti Conformations of Solvated Cyclic 3-€™,5-€™-adenosine Monophosphate. J. Phys. Chem. 1996, 100 (8), 3293-€3298.
  • Kirschner, K. N.; Shields, G. C. Quantum Mechanical Investigation of Cyclic 3-€™,5-€™-adenosine Monophosphate, the Second Hormonal Messenger. J. Mol. Struct. THEOCHEM 1996, 362 (3), 297-€304.
  • Sherer, E. C.; Turner, G. M.; Lively, T. N.; Landry, D. W.; Shields, G. C. A Semiempirical Transition State Structure for the First Step in the Alkaline Hydrolysis of Cocaine. Comparison between the Transition State Structure, the Phosphonate Monoester Transition State Analog, and a Newly Designed Thiophosphonate Transition Stat. J. Mol. Model. 1996, 2 (4), 62-€69.
  • Brummel, H. A.; Shields, G. C. Semiempirical Study of the Bergman Reaction: Towards a Computationally Efficient and Accurate Method for Modeling Enediyne Anticancer Antibiotics. Int. J. Quantum Chem. 1995, No. 22, 51-€59.
  • Sherer, E. C.; Turner, G. M.; Shields, G. C. Investigation of the Potential Energy Surface for the First Step in the Alkaline Hydrolysis of Methyl Acetate. Int. J. Quantum Chem. 1995, No. 22, 83-€93.
  • Turner, G. M.; Sherer, E. C.; Shields, G. C. A Computationally Efficient Procedure for Modeling the First Step in the Alkaline Hydrolysis of Esters. Int. J. Quantum Chem. 1995, No. 22, 103-€112.
  • Kash, M. M.; Shields, G. C. Using the Franck-Hertz Experiment to Illustrate Quantization: Energy States of the Neon Atom by Electron Impact. J. Chem. Educ. 1994, 71 (6), 466-€468.
  • Kirschner, K. N.; Shields, G. C. Quantum-Mechanical Investigation of Large Water Clusters. Int. J. Quantum Chem. 1994, No. 28, 349-€360.
  • Lively, T. N.; Jurema, M. W.; Shields, G. C. Hydrogen Bonding of Nucleotide Base Pairs: Application of the PM3 Method. Int. J. Quantum Chem. 1994, No. 21, 95-€107.
  • Shields, G. C. The Physical Chemistry Sequence at Liberal Arts Colleges: The Lake Forest College Approach. J. Chem. Educ. 1994, 71 (11), 951-€953.
  • Jurema, M. W.; Kirschner, K. N.; Shields, G. C. Modeling of Magic Water Clusters (H2O)20 and (H2O)21H+ with the PM3 Quantum-Mechanical Method. J. Comput. Chem. 1993, 14 (11), 1326-€1332.
  • Jurema, M. W.; Shields, G. C. Ability of the PM3 Quantum-Mechanical Method to Model Intermolecular Hydrogen Bonding between Neutral Molecules. J. Comput. Chem. 1993, 14 (1), 89-€104.
  • Shields, G. C.; Kash, M. M. Experiment in Quantization: Atomic Line Spectra. J. Chem. Educ. 1992, 69 (4), 329-€331.
  • Kalkanis, G. H.; Shields, G. C. AM1 and PM3 Calculations of the Potential Energy Surfaces for Hydroxymethyl Radical Reactions with Nitric Oxide and Nitrogen Dioxide. J. Phys. Chem. 1991, 95 (13), 5085-€5089.
  • Schultz, S. C.; Shields, G. C.; Steitz, T. A. Crystal Structure of a CAP-DNA Complex: The DNA Is Bent by 90 Degrees. Science 1991, 253 (5023), 1001-€1007.
  • Schultz, S. C.; Shields, G. C.; Steitz, T. A. Crystallization of Escherichia coli Catabolite Gene Activator Protein with Its DNA Binding Site: The Use of Modular DNA. J. Mol. Biol. 1990, 213 (1), 159-€166.
  • Nelson, P. R.; Fung, C.; SedgwickK, J. B.; Shields, G. C.; Abbey, L. E.; Moran, T. F. Doubly Charged Ion Mass Spectra of Alkyl-Substituted Furans and Pyrroles. Org. Mass Spectrom. 1987, 22 (7), 389-€399.
  • SedgwickK, J. B.; Paulson, B. P.; Shields, G. C.; Moran, T. F. Competition between Single and Double Electron Transfer in Collisions of Doubly Charged Molecular Pyrrole Ions with Neutral Pyrrole Molecules. Int. J. Mass Spectrom. Ion Process. 1987, 79 (1), 127-€140.
  • Shields, G. C.; Steiner, P. A.; Nelson, P. R.; Trauner, M. C.; Moran, T. F. Charge Transfer Reactions of Organic Ions Containing Oxygen: Correlation between Reaction Energetics and Cross Sections. Org. Mass Spectrom. 1987, 22 (2), 64-€69.
  • Steitz, T. A.; Beese, L.; Engelman, B.; Freemont, P.; Friedman, J.; Sanderson, M.; Schultz, S.; Shields, G.; Warwicker, J. Structural Studies of Three DNA Binding Proteins: Catabolite Gene Activator Protein, Resolvase, and the Klenow Fragment of DNA Polymerase I. In DNA-€”Ligand Interactions; Springer US: Boston, MA, 1987; pp 185-€189.
  • Appling, J. R.; Shields, G. C.; Moran, T. F. Evidence for Long-Lived Excited States of [CnH2]2+ Carbodications. Org. Mass Spectrom. 1986, 21 (2), 69-€75.
  • Burdick, G. W.; Shields, G. C.; Moran, T. F. Polarizabilites of Organic Ions. Org. Mass Spectrom. 1986, 21 (7), 449-€450.
  • Shields, G. C.; Moran, T. F. Doubly-Charged Ethane Ions: Solution to the Dilemma of Stability Predicted by Theory and Instability Observed in Experiment. Org. Mass Spectrom. 1986, 21 (8), 479-€483.
  • Shields, G. C.; Moran, T. F. Doubly-Charged Gas Phase Cations. Theor. Chim. Acta 1986, 69 (2), 147-€159.
  • Shields, G. C.; Wennberg, L.; Wilcox, J. B.; Moran, T. F. Sensitivity of Charge Transfer Reactions to Hydrocarbon Ion Structures. Org. Mass Spectrom. 1986, 21 (3), 137-€149.
  • Burdick, G. W.; Shields, G. C.; Appling, J. R.; Moran, T. F. Structures, Energetics and Fragmentation Pathways of CnH22+ Carbodications. Int. J. Mass Spectrom. Ion Process. 1985, 64 (3), 315-€333.
  • Shields, G. C.; Moran, T. F. Molecular Charge-Transfer Cross Sections and Their Correlation with Reactant Ion Structures. J. Phys. Chem. 1985, 89 (19), 4027-€4031.
  • Shields, G. C.; Moran, T. F. Double Electron Transfer Reactions of CO22+ Ions. Chem. Phys. Lett. 1983, 101 (3), 287-€290.
  • Shields, G. C.; Moran, T. F. Single- and Double-Electron Transfer Reactions of Ground and Metastable State Ar2+ Ions. J. Phys. B - At. Mol. Opt. Phys. 1983, 16 (19), 3591-€3601.
​​​
Education
Ph.D., Georgia Institute of Technology
B.S., Georgia Institute of Technology
​​

Connect with Admission

Furman is one of the nation's premier liberal arts and sciences universities. We offer our students The Furman Advantage—an over-arching approach to education that promises every student a four-year personalized pathway, a team of advisors and mentors, and the opportunity for an engaged learning experience that is tracked and integrated with the students' academic and professional goals.

Want more information about the admission process at Furman?

Contact us

Once you see our campus, making the right college decision will be so much easier.

Plan a visit

Undergraduate Evening Studies provides adults the opportunity to receive an education from one of the premier liberal arts universities in the nation.

Whether you are starting or continuing your education, or have been away from the classroom for a few months or several years, our program provides many services to assist you with accomplishing your educational and professional goals.

Apply now

Our graduate studies program is designed for the professional educator.

We know the challenges teachers and administrators face every day, and we are committed to helping you become a leader within your school system or district.

Apply now
  • Furman University